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Feature Extraction of Event-Related Potentials
Using Wavelets: An Application to Human
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This report deseribes the development and evaluation of mathematical models
for predicting iiman performance from diserete wavelet transforms (DWW of
cvent-related potentials (ERPY elicited by task-relevant stimuli. The DWT was com-
pared to principal components analysis (PCA) for representation ol ERPs in hincar
regression and neural network models developed o predict a composite measure
of human signal detection performance. Linear regression models based on coclli-
cients of the decimated DWW predicted signal detection performance with hall” as
many free parameters as comparable models based on PCA scores. In addition, the
DWT-based models were more resistant (o model degradation due to over-fitting
(han PCA based models. Feed-forward nearal networks were (rained using the back-
propagation algorithm (o predict signal detection performance based on raw ERPs,
PCA scores, or high power coelticients of the DW'T. Neural networks based on
high power DWT coellicients trained with fewer iterations, generalized to new data
better, and were more resistant to overfitting than networks based on raw ERPs.
Networks based on PCA scores did not generalize (o new data as well as cither the
DWT network or the raw ERP network. The results show that wavelet expansions
represent the ERP efticiently and extract behaviorally important features for use in
lincar regression or neural network models of human performance. The cfficiency
of the DW'T is discussed in terms ol its decorrelation and energy compaction proper-
tics. In addition, the DWT models provided evidence that a pattern of low-frequency
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activity (1 to 3.5 Hz) oceurring at specific timies and scalp locations is a reliable
correlate of human signal detection performance. @ 1999 Academic Press
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INTRODUCTION

Studics have shown that lincar regression models may signilicantly ex-
plain and predict human performance from measures of ERPs elicited by
stimuli presented in the context of a task (Trejo, Kramer, & Arnold, 1995).
These models have used, as predictors, measures such as the amplitude and
lateney of ERP components (c.g., N1, P300). Other studics have used more
comprehensive measures such as factors derived from principal components
analysis and  discriminant functions  (Humphrey, Sirevaag, Kramer, &
Mecklinger, 1990). Such models work best when they have been adapted
to the individual subject, taking into account the temporal and topographic
uniqueness ol the ERP. Even then, the models often suffer from a limited
ability to generalize to new data. In addition, the cost of developing and
adapting such models for individuals is high, requiring many hours of expert
analysis and interpretation of ERP wavelorms.

Neural network models for ERPs may be an improvement over lincar re-
aression models (DasGupta, Hohenberger, Trejo, & Mavzvzara, 1990; Kaylani,
Marzara, DasGupta, Hohenberger, & Trejo, 1991; and Ryan-Jones & Lewis,
1991). However, when neural network models have been based on traditional
ERP measures, such as the sampled ERP time points or the amplitude of
ERP components, the improvement in correlation between ERP measures
and human performance has been small, typically about 10% (Venturini,
Lytton, & Sejnowski, 1992). ‘Transformations of ERPs prior to ncural nct-
work analysis. such as the Fast Fourier transform (FFT), may improve neural
network models (DasGupta, Hohenberger, Trejo, & Kaylani, 1990). How-
cver, the FET is not ideally suited to representing transient signals: it is more
appropriate for continuous signals, such as sine waves.

The wavelet transform is well suited to analysis of transients with time-
varying spectra (Tuteur, 1989; Daubechies, 1990, 1992) such as the ERP.
Discrete wavelet transforms (DWT; Shensa, 1991) represent signals as tem-
porally ordered coctficients in different scales of a time—frequency planc.
More precisely, the DWT represents signals in a time--scale plane, where
scale is related to—but not identical with—irequency. The concept of scale
comes from the dilation of a “*mother wavelet’” in the time domain. Each
dilation i1s a doubling of the wavelet Iength in the time domain which results
in a halving of the bandwidth in the frequency domain.

Hach scale of the transform corresponds (o one octave of signal bandwidth
beginning with the smalest scale, i.c., the scale that corresponds to the high-
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est frequencies represented in the signal. This scale, which is referred 1o as
scale 0, contains frequencies ranging from the Nyquist frequency (half the
sampling rate) to one-hall” the Nyquist frequency. As scales increase, the
bandwidth decreases by a factor of 2. For example, the bandwidth of scale
I extends from !> Nyquist to 'i Nyquist, and so on. The result of this succes-
sive halving of scale bandwidth is increasing frequency resolution (narrower
bands) at farger scales (lower {requencies).

Because large scales represent low frequencices, fewer coclficients are re-
quired to represent the signal at large scales than at small scales. Since the
bandwidth decercases by a factor of 2 with cach scale increase, the sampling
rate or number of coctticients can also be halved with each scale increase.
This process. called decimation, 1cads to an cconomic but complete represen-
tation of the signal in the time- scale plane. However, in some cases decima-
tion may be undesirable, for example, when the temporal detail in a particular
scale is of interest. In such cases, the undecimated wavelet transform may
be computed.

It is convenient to refer (o the bandwidths of the scales in units of hertz,
and this familiar unic will be used 1o make the following illustration. For a
[-s-long EEG signal with a bandwidth of 32 Hz and 64 time points, the first
and smallest scale of the DWT would represent frequencies in the range
from 16 to 32 Hz with 32 coclficients. The next larger scale would represent
frequencics of 8 to 16 Tz with 16 cocllicients. Successively larger scales
would have the bandwidths and numbers of coceflicients 4—8 Hz/8, 2—4 Hz/
4,12 12/2.0-1 Hz/1 A single additional coefficient would represent the
DC level, foratotal of 64 coefficients. In practice, the scale boundarics may
deviate from this perfect halving of frequency and numbers of coetficients,
depending on the method of computation. In particular, the undecimated
DWT computations we will use here (Shensa, 1991) Tead to scale boundaries
that differ slightly from this example. However, the effects of these minor
differences are inconsequential.

As with the discrete Fourier transform, the DWT is invertible, allowing
for exact reconstruction of the original signal. An important feature of the
DWT, however, is that the cocfhicients at any scale are a series that measures
energy within the bandwidth of that scale as a function of time. For this
reason it may be of interest o study signals within the DW'T representation
and use the DWT coclficients of brain signals directly in modeling cognitive
or behavioral data.

[n this study, the effect of representing ERPs using the DWT was com-
pared with more traditional representations such as raw ERPs, peak and la-
teney measures, and factors derived using principal components analysis
(PCA). The comparisons determined whether the DWT can efficiently ex-
tract valid features of ERPs for use in lincar regression models of human
signal detection performance. In addition, neural network models were tested
to determine whether the relative efficiency and validity of the DWT and
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other ERP representations would be maintained with a nonlincar method.
The signal detection task was chosen because ERP performance relationships
in this task have been described and analyzed with linear regression models
bascd on peak and latency measures of ERP components (T'rejo et al., 1995).

METHOD

In an carlier study (Trejo etal., 1995), ERPs were acquired in a signal detection task from
cight male Navy technicians experienced in the operation of display systems. Fach technician
was trained (o a stable level of performance and tested in multiple blocks of 50 72 trials cach
on two separate days. Blocks were separated by T-min rest intervals, About 1000 trials were
performed by cach subject. Intertrial intervals were ol random duration with a mean of 3 s
and a range ol 2.5 3.5 5. 'The entire experiment was computer-controlled and performed with
A HO-in. color CRT display.

Triangular symbols subtending 42 min of arc and of 3 different luminance contrasts ((17,
A3 or 53) were presented parafoveally at a constant cecentricity of 2° visual angle. One
symbol was designated as the target, the other as the nontarget. On some blocks, targets con-
tained a central dot whereas the nontargets did not. However, the association of symbols to
targets was alternated between blocks to prevent the development of automatic processing.
A single symbol was presented per trial, at a randomly sclected position on a 2° annulus.
Fixation was monitored with an infrared eye tracking device. Subjects were required to classify
the symbols as targets or nontargets using, button presses and then to indicate their subjective
conlidence on a 3-point scale using a three-button mouse. Performance was measured as a
lincar composite of speed, accuracy, and confidence. A single measure, PHL, was derived
using lactor analysis of the performance data for all subjects, and validated within subjects.
PEL varied continuously, being high for Tast, accurate, and confident responses and low for
slow. inaceurate, and unconlident responses. The computational formula for P was

PEL 33 Accuracy 153 Confidence .51 Reaction Time
using standard scores for accuracy, confidence, and reaction time based on the mean and
varianee ol their distributions across all subjects.

ERPs were recorded from midline frontal, central, and parictal clectrodes (17, C7Z., and P7;;
Tasper, 1958), referred (o average mastoids, filtered digitally to a bandpass of 0.1 1o 25 s,
and decimated o a final sampling rate of 50 Tz, The prestimulus baseline (200 ms) was
adjusted to zero (o remove any DC oflset. Vertical and horizontal electrooculograms (EOG)
were also recorded. Across subjects, a total of 8184 ERPs were recorded. Epochs containing,
artifacts were rejected and BOG-contaminated epochs were corrected (Gratton, Coles, & Don-
chin, 1983). Furthermore, any trial in which no detection response or confidence rating was
made by a subject was excluded along with the corresponding ERP.

RESULTS
Data Sample Construction

Within cach block of trials, a running-mean ERP was computed for each
trial. Bach running-mean ERP was the average of the ERPs over a window
that included the current trial plus the 9 preceding trials for a maximum of
10 trials per average. Within this 10-trial window, a minimum of 7 artifact-
free ERPs were required to compute the running-mean LRP. I fewer than
7 were available, the running mean for that trial was excluded. Thus cach
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FIG. 1. Ranning-mean ERPs at sites FZ, C7Z, and PZ for subject 2 in the first block of
SO riads. Zero on the abscissa represents the stimulus onset (appearance of the display symbol
used for the signal detection task). The ordinate represents scalp voltage at cach electrode
site; positive is up. The running-mean ERPs {or suceessive (rials of the block are stacked
vertically from bottom o top (fowest is first).

running mean was based on at Ieast 7 but no more than 10 artifact-free ERPs.
This 10-trial window corresponds to about 30 s of task time. The PEF1 scores
for cach trnal were also averaged using the same running-mean window ap-
plied to the ERPs, excluding PET scores for trials in which ERPs were re-
jeeted.

Prior 1o analysis, the running-mean ERPs were clipped to extend from
time zero (stimulus onset time) to 1500 ms poststimulus, for a total of 75
time points. Sample running-mean ERPs (prior to application of rejection
criteria) for one subject from one block of 50 trials are shown in Fig. 1. Over
the course of the block, complex changes in the shape of the ERP are evident.

The set of running-mean ERPs was split into a screening sample for build-
ing models and a calibration sample for cross-validation of the models. Tor
cach subject, odd-numbered blocks of trials were assigned to the screening
sample, and cven blocks were assigned to the calibration sample. After all
trial-rejection criteria were satislied, 2765 running-mean ERPs remained in
the screening sample and 2829 remained in the calibration sample.
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Lincar Regression Models

A multiple-clectrode (17, C7, PZ) covariance-based PCA was performed
on the running-mean ERPs. Each observation consisted of the 75 time points
for cach clectrode for a total of 225 variables per observation. Usually in
PCAs applicd to ERP data, the data from different electrodes would be in
different observations, i.c., cach observation representing an epoch-clectrode
combination. The objective is to identify physiologically meaningful compo-
nents rather than to maximally decorrelate and compress the data. However,
to remain compatible with our DWT computations (sce below) we chose
to consider cach epocl as an observation rather than cach epoch-clectrode
combination. This is still a fegitimate multivariate lincar trans{orm, where the
objective is to decorrelate and compress the variables rather than to identify
components. While this is unconventional, we have other evidence that the
conventional approach would not have made a difference in this case. In
another analysis (Trejo & Mullane, 1995), which compared DWT and PCA
on the present data using a bootstrap classification approach, a traditional
PCA required more data to reach the same classification accuracy as a DWT
representation of the HRPs.

The BMDP program 4M (Dixon, 1988) was used for the calculations,
using no rotation and extracting all factors with an cigenvalue greater than
I One hundred thirty-six factors were extracted, accounting for 99.45% of
the vartance in the data. The decay of the cigenvalues was roughly exponen-
tial, with the first 10 factors accounting for 70.96% of the variance in the
data. Factor scores were computed for cach running-mean ERP and stored
for model development.

The DWT (Shensa, 1991) was computed using the same ERPs as in the
PCAL As for the PCA, cach cpoch served as an observation. However, the
DWT was computed scparately for cach clectrode within cach observation.
A Daubechies analyzing wavelet (Daubechies, 1990) was used to compute
the DWT ol the BEG data over four scales. The tength of the filters used
for this wavelet was 20 points. This results in very smooth signal expansions
in the wavelet transform. The scale boundarics and center frequencies of the
sciles are listed in ‘Fable 1.

TABLL |
Scales of the 20-Point Daubechies Discrete
Wavelet Transform

Center
Scale Bandwidth (11) frequency (112)
0 10.50 25.00 16.20
| 4.42 10.50 6.82
2 1,80 4.42 2.87
3 0.78 -1.80 1.20
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The transform was centered within the ERP epoch and decimated by a
factor of 2 at successive scales, yielding a total of 70 coefficients per trans-
form (very low [requency scales and the DC term were excluded). The num-
ber of coellicients was approximately halved with cach increasing scale after
decimation. For scales 0-3, the respective numbers of coefficients were 37,
19,9, and 5. The real values of the DWT were stored for model development.
No further transformations were performed.

Lincar regression models for predicting performance (PI1), from cither
the PCA factor scores or from the DW'T coeflicients of the running-mean
LR Ps, were developed using o stepwise approach (BMDP program 2R). A
criterion I ratio ol 4.00 was used (o control the entry ol predictor variables
into a model. The I ratio to remove a variable from a model was 3.99,
resulting ina forward-stepping algorithm. The performance of cach model
was assessed by examining the coctlicient of determination, #* as a function
of the number ol predictors entered (7 is the square of the multiple correla-
tion coellicient between the data and the model predictions and also measures
the proportion of variance accounted for by the model when the sample size
is adequate and distributional assumptions are met).

Using the criteria described above, 90 of the 136 PCA factors entered into
models predicting PEL and 92 of the 210 DWT entered into models pre-
dicting PE1 (Fig. 2). The r" increased for the PCA models in a fairly smooth,
negatively aceelerated fashion from a minimum of .07 for a single-factor
mode! to a maximum of .58 using 90 factors as predictors. The ¢ for the
DWT model based on a single coclficient was .12, nearly double that of the
PCA model based on a single Tactor. The increase in #° for the DWT models
was almost lincar for models using up to four coefticients as predictors. Be-
yond that, further increases occurred in a picce-wise lincar fashion reaching
a maximum of .62 using 92 predictors. The greatest difference in 7 between
the DW'T and PCA models ((11) also occurred with four predictors.

Prior experience has shown that models using more than 10 predictors
have limited generality and are difficult to interpret. For this reason, cross-
validation of the PCA and DWT models was performed with no more than 20
predictors. The models developed using the sereening sample were applied in
turn to the PCA scores and DW'T coeflicients ol the calibration sample. As
lor the screening sample, performance of the models for the calibration sam-
ple was assessed using #* (Fig. 3). In addition, the significance of #? was
assessed using a Foratio test (BEdwards, 1976). This test used an adjusted
number of degrees of freedom for the denominator, to allow for the serial
correlation in the data introduced by computing the running means of the
FRPs. In effect, the number of degrees of freedom was divided by 10, to
allow for the 10-trial cycele length of the running-mean window. A conserva-
tive significance level of 001 was chosen, given the large number of models
computed. The contour ol " values at this significance level appears as a
dashed line in Fig. 3.
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FIG. 2. Coclficients ol determination (#7 or variance accounted for) for PCA and DWT
models developed to predict task performance (PEL) Tor cight subjects in a signal detection
task. Models were based on i sereening sample of running-mean LRP and PET data, drawn
trom odd numbered blocks of trials. Models are assessed by the # as a function of the number
of predictors entering into the model. Only models in which predictors met a criterion I ratio
ol 4.0 1o enter (3.99 (o remove) are shown.

Allof the PCA and DWT models tested explained significant proportions
ol vartance in the calibration data set. For the PCA models, calibration #*
rose gradually from a ncarly insignificant level to a maximum ol .22 using
10 predictors. The equation for the 10-predictor PCA model was

Pl ALE2 10+ I3 FS - 058 - .09 F9 + .08 Il
06 F1S 08 F43 .07 F47 - .07 o8 + .02,

where the factors are indexed according (o the proportion of variance ac-
counted for in the running-mean ERPs. The lactor accounting for the greatest
variance in the ERPs (Factor 1) did not enter the model. Five of the first 10
factors (Factors 2, 4,5, 8, and 9) entered the model. Respectively, these
factors accounted {or proportions of variance in the ERPs of .12, .031, .0283,
0184, and L0169, or a total of .21 (21%). The entry ol some of the higher
factors in the 10-predictor model is surprising, given the small amount of
variance in the ERPs that they account for. For example, Factors 11, 15, 43,
47, and 68 accounted for proportions of variance cqual to .014, .01, .0022,
0019, and L0011, respectively, or a total of .0292 (under 3%).

Among the DWT models, the calibration » for a single predictor ((11)
was well above that of the corresponding single-lactor PCA model (.04) and
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FIG. 3. Coclticients of determination (77 or variance accounted for) for the first 20 PCA
and DWI models of Fig. 2, cross-validated using running-mean ERP and P data from a
calibration set ol data drawn from even-numbered blocks of trials. The dot-dashed line indi-
cates the contour of ~ vidues signilicant using an £ ratio test at the p <7 001 level where the
nunerator degree of freedom depends on the number ol predictors and the denominator degrees
of freedom is one-tenth of the sample size. Values above this contour are significant.

rose to a maximum of .22 using {ive DWT cocfficients as predictors. The
DWT coctiicients are coded by clectrode (K7, CZ, PZ), scale (S0, S1, S2,
S3), and time index (TO, T1, ..., TN). Actual latencies of the time points
are obtained by multiplying the time index by 20 ms, the sampling period.

The best single-predictor model was based on coefficient CzS3T22, with
a regression coefficient of .03 and an intercept of .02. Beyond live pre-
dictors, the  for the DWT models declined slightly and leveled olf after
about 10 predictors, showing no further improvement. As for the screening
sample data, the greatest dilference in 7 between the DWT and PCA models
for the calibration sample (.10) occurred with four predictors.

The equation of the best five-predictor DW'T" model selected by the step-
wise regression algorithm was

P11 0.03 * F/ZS2T6 -+ 0.04 *# FZS27122 + 0.06 * CZS2T6
0.05 = C7ZS82T22 - 0.05 * PZS2T6 — 0.17.

I'rom the five-predictor model, it is clear that a single scale, number 2, is
most important for predicting task performance. This scale mainly refiects
the time course of energy within the bandwidth of .078 to 1.86 Hz, which
overlaps the range of the delta band of the EEG (1-3.5 Hz) and will include
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somie influence from tow-{requency ERP components such as the P300 and
slow waves. Two time intervals are indicated across clectrodes: point 6 at
1'7. C7Z, and P7Z (120 ms), and point 22 and I'Z and Pz (440 ms). Frontal
and parictal energy (FZ, PZ) in scale 2 at 120 ms is inversely related o PEI
as shown by the negative regression cocfticients, whereas central activity
(C7) s positively related to PELL Central and parictal energy (Cz, Pz) in
scale 2 is mversely related o PIFL at 440 ms.

One potential problem with the wavelet analysis performed here stems
from the length of Daubechies filters used (20 points). These fitters had
lengths over one-fourth the fength of the signals (75 points). While these
lilters produce smooth wavelet transforms, they also increase the “‘support’”
ol the transforms in the time domain. This means that the transtorms are
extrapolated in time before and after the interval of the signal. It also means
that, with respecet to the filter Iength, the signal is short in duration and ap-
pears 1o be a bricl impulse at Targer scales. A possible complication from
this is that time resolution for signal features at the larger scales may be
Iprecise.

[t 1s possible to decrease the support of the wavelet transform at the ex-
pense of smoothness by using shorter filters. To test the effects of shorter
filters, the current data were partially reanalyzed using Daubechies filters of
4 points in length. With these filters, the support of the transform is reason-
able at all four of the scales analyzed and time resolution of signal features
at the larger scales is more precise than with the 20-point filters.

The most important single predictor {or the 4-point filter DWT was located
at clectrode Cz and scale 3, as for the best single-predictor model based on
20-point filters. However, the wavelet coefficient in the 4-point filter model,
CZS3TIS, was at the 15th time point or a latency of 300 ms. This lies 120
ms carlier than the scale 3 coelficient in the best single-predictor model based
on the 20-point filters (Cz83122). The regression coefficient for CzS3TI15
in the 4-point filter model was .03, with an intercept of —.16. The difference
in time suggests that CzS3TLS in the 4-point filter model may be a different
feature of the ERP than CzS3122 in the 20-point filter model, even though
itis in the same scale and at the same electrode. The cross-validation 2 for
the 4-point filter based on CzS3T15 was .15, which is higher than the # for
CzS3T22 in 20-point filter model (11).

Neural Network Analyses

In addition to the lincar regression models, feed-forward artificial neural
networks were trained using the backpropagation method (Rumelhart &
McCletland, 1986) to predict PET from ERP patterns. Three networks were
trained: (1) raw ERPs: (2) PCA scores; and (3) DWT cocefficients. For the
HRP network. the inputs were the voltages in the ERP time series for clec-
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TABLI 2
Scales of (he 4-Point Daubechies Discrete Wavelet
Translorm

Center
Scale Bandwidth (1) frequency (Hz)
0 10.88 -25.00 16.49
| 4.74 - 10.88 7.18
2 206 4.74 312
3 0.90 2.06 1.36
4 0.39--0.90 0.59

trodes 17, C7. and PZ. These were the same data used to derive the PCA
scores and DWT cocfficients used in the lincar regression models described
carlicr. There were 75 points per clectrode spanning a latency range of 00—
1500 ms, for a total of 225 network inputs. For the PCA network, the PCA
scores used i the linear regression models described above served as inputs.
As for the linear regression models, only the first 136 factors were retained.

Lor the DW'T network, three changes were made in the generation and
selection of DWT cocetficients. First, the wavelet transform was based on
the 4-point Daubechies filters which appeared 1o be superior to the 20-point
{ilters used n the initial lincar regression models. Second, since low-fre-
quency information scemed valuable in the lincar regression models, the
range of the transform was extended, adding a fifth scale (Table 2). Third,
scelection of the coefticients was not performed by the decimation approach
taken for the lincar regression models. Instead, the undecimated transforms
were computed (Shensa, 1991), yielding 75 points lor cach scale. Then the
nean power of cach coetficient was computed and the top 20% of the cocetfi-
cients at cach scale were selected as inputs to the network (Fig. 4). This
resulted ina set of 225 coctlicients, or about the same number that would
be obtained by decimation. However, this scheme selects coefticients that
are high in power, and so account for large proportions of the ERP signal
variance at cach scale.

Networks were trained and tested with a commercial software package
(Brainmaker, Catifornia Scientific Software, Inc.). All three networks con-
sisted of two layers. A single “*hidden’ layer consisting ol three neurons
received connections from all the inputs. These three ncurons were fully
connected to the output layer, which consisted of a single neuron. The teach-
ing signal for this ncuron was PE1. In addition to inputs from other neurons,
cach ncuron received a constant ““bias™ input, which was fixed at a value
of 1.0.

The output transfer function for all neurons was the logistic function with
a gain of 1.0 and a normalized output range of 0.0 to 1.0. The learning rate
was 1.0 and the momentum was 0.9. All inputs and the desired output (PF1)
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FI1G. 4. Mcan power of the undecimated S-scale DWT cocelficients at electrodes 17, C7/.,
and P7Z, used for the neural network trained to predict PEL The DWT coefticients for cach
running-mean ERP were squared, summed, averaged, and plotted as a function of time relative
to the stimulus. Each row of graphs represents one scale of the transtorm beginning with the
smiallestscales at the top (see Table 2) and proceeding to the largest scale at the bottom. Fach
column of graphs corresponds to one clectrode site in the order FZ, C7, PZ., from lelt to right.
The 80% quantile was computed across clectrodes within cach scale and is shown by the
horizontal line in cach graph. Coeflicients with mean power values greater than the 80%
quantile, .o, the top 209, were used as inputs to the neural network.

were independently and lincarly normalized to have a range of 0.0 to 1.0.
As for the lincar regression models, the screening sample (half of runs) was
used for training the networks and the calibration sample (the remaining
runs) was used for testing. Training proceeded by adjusting the connection
weights of the neurons for every input vector. The training tolerance was
0.1; i.c., il the absolute error between the network output (predicted PFI1)
and the actual PET value for a trial exceeded 10%, then the connection
weights were adjusted using the backpropagation algorithm.

Prior to training, the sequence ol input vectors was randomized. Training
involved repeated passes (training epochs) through the screening sample and
was stopped alter a maximum ol 1000 training cpochs. Testing was per-
formed on the calibration sample at intervals of 10 training cpochs. The
validity ol a trained network was measured in erms of the proportion of
calibration sample trials for which PIT was correctly predicted to within the
criterion 10% margin of crror. The curve relating the proportion of correctly
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F1G. 5. Generalization learning curves ol the three neural networks trained to predict PEI
from raw ERPs (solid line), PCA scores (dotted line), or high-power DW'T cocelficients (dashed
line). The abscissa marks the number of training epochs (complete passes through the sereening,
satmple) and the ordinate marks the proportion of trials in the calibration sample for which
PL was correctly predicted with o 10% margin of crror. The solid cireles mark the highest
proportion correct for cach network.

predicted calibration sample trials (o the number of training cpochs will be
referred o as the generalization learning curve (Fig. 5).

The probability of correctly guessing a uniform random variable with a
range of 0.0 to 1.0 with a 10% margin of crror is 0.2. As shown in Fig. 5,
two ol the three networks trained to predict PET in the calibration sample
better than 0.2 with as few as 10 training epochs. Beyond 50 training epochs,
the genceralization [earning curves of the three networks begin to diverge.

The DW'T network appears to “‘learn’ to generalize about as well as it
can by about 290 training cpochs. FFor this network, the proportion correct
Junmps (rom about .25 to over 0.3 near 200 epochs. From that point on, a
rough platcau in the curve is held, with a few dips between 800 and 1000
cpochs. The maximum proportion correct of 348 occurs at ¢poch 930, but
this 1s not substantially (or significantly) greater than an carlier maximum
ol .346 at ¢poch 290.

Lor the ERP network, a gradual rise in the proportion correet occurs be-
tween 10 and 400 cpochs, reaching a4 maximum ol 331 at training c¢poch
350. Beyond 400 cpochs, the proportion correct for the ERP network declines
gradually o near chance levels of performance.

The generalization learning curve of the PCA network exhibits the most

&
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complex shape, rising and falling repeatedly over the 1000-¢poch range. In-
terestingly, it also shows a large step near 200 epochs, as did the DWT
network, and an carly maximum of 0.279 at 250 epochs, after which the
curve declines and oscillates up to about 850 cpochs. At that point the curve
rises again, reaching a new, higher maximum of 0.288 at 940 c¢pochs.

Although the curves in Fig. S are complex, two generalizations seem possi-
ble. First, within the 1000-cpoch scope of the training, all three networks
appear to achieve near-maximal levels of generalization performance within
the tirst 400 training cpochs. Beyond 400 training cpochs, further training
appears 1o produce cither declines or oscillations in generalization perfor-
mance, and only small increases above the carlier maximum proportions of
correctly predicted trials occur. Second, the DWT network trained most rap-
idly and achieved the highest and most stable level of gencralization perfor-
mance. 'The DWT network “*learned™ to gencralize to new data {aster than
the ERP network by about 60 training epochs.

The raw ERP network achieved a proportion correct approaching that of
the DWT network (331 versus .348) but was not as stable. A z test of the
significance ol the difference between these proportions based on the stan-
dard normal distribution (Fleiss, 1981, p. 23) yielded a p valuc of .21. How-
cver, an /7 test of the ratio ol variances of proportions correct for the ERP
and DW'T networks between epochs 200 and 1000 rejected the hypothesis
that the vartances were equal, 17(79,79) «+ 3.12, p << .000 (the alternative
hypothesis was that the true ratio of variances was greater than 1.0).

Generalization performance ol the PCA network was lower than the per-
formances ol both the BERP and DW'T networks. The z tests of the differences
between the proportions correct of DWT and PCA networks and of ERP and
PCA networks yielded povalues of L0015 and .0162, respectively.

Decorrelation and Fnergy Compaction

Statistical independence of the predictor variables could be one reason the
lincar regression models based on PCA scores and the DWT were more
successtul than the peak and latency measures used in carlier analyses. In
the signal processing literature, the tendency of a transform to render inde-
pendent measures from multivariate data is called decorrelation. Decorrela-
tion clficiency compares the sum of the off-diagonal terms in the covariance
matrices of the original (raw ERPs) and the transformed data (Akansu &
THaddad, 1992, p. 28). A transform that perfectly decorrelates the data has
a decorrelation cfficiency of 1.0,

The decorrelation efficiency of the 4-scale DWT used here was 0.13. Al-
though the factors obtained with PCA are decorrelated, the factor scores
that represent the data may be corretated. For this rcason, the decorrelation
clticiency of the PCA, measured from the covariance matrix of the factor
scores was not 1.0, but .64, which is still several times higher than the decor-
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relation efficiency of the DWT. However, the DWT regression models ex-
plained the same amount or more variance in the data using fewer variables
than the PCA models. Thus it appears that the decorrelation efficiency of a
transform alone does not determine how well it will extract important ERP
features for modeling task performance.

The refatively small number of DW'T coelficients needed to generalize to
new data using lincar regression models suggests that the DWT efficiently
extracts a small but behaviorally important set of features from the ERP.
The relative speed of generalization learning by the DWT neural network
may also be consistent with this idea. If only a small proportion of the inputs
contains information related to the output then only the weights correspond-
ing to those mputs would require adjustment, lcading to faster gencralization
[carning.

In signal processing, the property ol a transform that describes its tendency
to concentrate imformation in a small proportion of the variables is called
energy compaction (Akansu & Haddad, 1992, p. 28). Good energy compac-
tion means having a small number of large values on the diagonal of the
covariance matrix of the transform variables. It is measured as a function of
the number of variables retained to fit the data, sorted in order ol decreasing
covariance. Energy compaction could also result in more robust models,
showing less overfitting. This could occur when the variables that explain
most of the vartance enter first, leaving only variables of low influence to
adversely affect the fits when added later.

For the data used in the lincar regression models, energy compaction mea-
sures of the raw ERPs, PCA scores, and DWT cocfficients for 5 variables
were .00, .08, and .09. For 10 variables, energy compactions for ERP, PCA,
and DWT were (11, (15, and .16, and for 20 variables, energy compactions
were (20, .25, and .26, respectively. Thus over the range of models tested,
the DW'T was only slightly more efficient in compacting the energy (or vari-
ance) m the data than the PCAL It seems unlikely that such small differences
in energy compaction {(about 1%) could account for the higher efticiency of
the DWT models than the PCA models.

DISCUSSION
Lincar Regression Models

Both PCA and DW'T methods yiclded lincar regression models that sig-
nificantly explained signal detection performance in a 30-s running window
and generalized to novel data. Both methods also performed better than a
traditional peak amplitude and latency analysis of the running-mean ERPs.
L'or comparison, the best stepwise lincar regression model developed using
predictors drawn from a set of 96 multiclectrode amplitude and latency mea-
sures of the HRP on the same data set yielded an r2 of .28 for the screening
sample and failed 1o significantly cross-validate on the calibration sample
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(Trejo et al., 1995; peak amplitude- and latency-based models did cross-
validate when adapted to the ERP waveforms of individual subjects).

The DWT models were clearly superior to the PCA models when based
on a small number of predictors. Twice as many PCA factors were required
to explain the same amount of variance in the data as DWT models based
on 5 cocefficients. In cross-validation, no advantage of the PCA models over
DWT models was evident with any number up to 20 predictors. The PCA
models showed evidence ol overfitting the data when more than 10 predictors
were used, as shown by the decline in ~ for the calibration sample for models
using 10 to 20 predictors. In contrast, the DW'T models suffered relatively
small decreases in 77 when using more than 3 coeflicients.

Single-predictor models for the DWT based on 4-point filters were com-
pared to the 20-point filters used inttially to determine the sensitivity of the
location estimates o filter Tength. 'The net effects of using shorter filters to
compute the wavelet transform were to change the location estimate, but not
the clectrode or scale estimates of the best single predictor model, and in-
creased cross-validation 7. The higher cross-validation #* for the 4-point
filter model than the 20-point filter model was unexpected. However, this
result suggests that more precise temporal localization of features in the
wavelet (ransform may provide more robust representation of the ERP or
LG features assoctated with task performance.

PCA is known o produce factors that resemble the shape and time course
of HRP components. The information provided by the DWT is somewhat
different. For example. the S-predictor DWT model indicated that a pattern
ol energy at specilic latencies in the ERP confined to the bandwidth associ-
ated with P300, slow waves, and EEG delta band activity, was correlated
with signal detection performance across a sample ol ¢ight subjects. 1t is
well known that P300 and slow waves co-vary with the allocation of cogni-
tive resources during task performance. However, it is not clear whether
the wavelet coefticients included in the regression models are simply better
measures of P300 and slow wave or if they represent new aspects ol the
LRP. Comparisons of HRPs reconstructed from the DWT coetficients and
the average ERP wavelorms will be required to express the coeflicients in
terms of familiar ERP peaks.

Newral Networks

As Tor the Tinear regression models, the best generalization performance
of neural networks——measured in terms of predicting PEL in the calibration
sample was achieved with the DW'I cepresentation of the ERPs. Somewhat
surprisingly, ncural networks trained (o predict PEI from raw ERPs general-
ized almost as well as the DW'T. Both ERP and DWT-based networks gener-
alized 10 new data significantly better than networks based on PCA scores.

The neural network based on the DW'I' required fewer training epochs
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than the raw-ERP network to reach a maximal level of generalization to new
data. In addition, beyond the initial training period of 200 epochs, generaliza-
tion performance of the DW'T network was more stable than that of the ERP
network. After about 400 training epochs, the generalization learning curve
declined for the ERP network, indicating overfitting of the data in the screen-
ing sample. In contrast, the generalization learning curve for the DWT exhib-
ited a few dips, but remained surprisingly stable over most of the training
range, indicating a resistance o overfitting. 'This result agrees with the resis-
tance (o overfitting observed with more than the optimum number coclli-
cients in the hincar regression models based on the DWT.

General Conclusions

The results deseribed here show that the DWT can provide an cfficient
representation of ERPs suitable for performance-prediction models using ei-
ther lincar regression or neural network methods. Furthermore, the DWT
models tested here needed the fewest parameters, exhibited highest general-
ization, and were relatively insensitive to the detrimental effects of overfit-
ting as comparcd to models based on PCA scores or raw ERPs. This result,
together with the initial rise in ~ for the lincar regression DWT models (Fig.
3). suggests that the DWT coefficients measure unique and important sources
of performance-related variance in the ERP.

The superiority of the DWT over PCA that we have seen in the models
tested here cannot be explained in terms of decorrelation and energy compac-
tion propertics of these transforms. Decorrelation was actually higher for
PCA than for the DW'T, and energy compactions over the range of variables
included i the models were about equal for the two transtforms. Instead, it
appears that the DWT simply provides more useful features than PCA, when
utility 1s measured by how clficiently task performance can be predicted
using ERPs.

For practical ERP-based models of human performance, case of model
development and speed of computation are also important factors. The cost
ol computing the DWT is trivial compared to deriving a PCA solution, which
mvolves imverting and diagonalizing a large covariance matrix. Even more
time is required for peak and latency analyses, which depend on expert hu-
man interpretation ol the wavelorms.

The nature of the features extracted using the DWT merits further study.
By identilying the time and scale of energy in the ERP related to task perfor-
mance, specific ERP or BEG components may be indicated. For example,
slow waves and delta-band activity appear in the S-predictor lincar regression
DW'T model ol signal detection performance. In this way, the DWT may
provide new insight into the physiological bases of cognitive stales associ-
ated with different performance levels in display monitoring tasks.

Future work should examine the reconstructed time course and scalp distri-
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bution of the patterns indicated by DW'T or other wavelet models and relate
these o known physiological generators. Through inversion of the DWT, it
is possible to reconstruct the time course of the energy indicated by a specitic
model. In addition, other wavelet transforms may provide a finer analysis of
the time- frequency distribution of the ERP. For example, wavelet transforms
using multiple “*voices™ per scale, such as the Morlet wavelets or wavelet
packets, provide much fliner resolution than that afforded by the DWT
method used i this study. In addition, data [rom other kinds of tasks should
be analyzed and the development of models for individual subjects should
be also explored.
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